Search results

Search for "scanning near-field optical microscopy" in Full Text gives 13 result(s) in Beilstein Journal of Nanotechnology.

Experimental study of an evanescent-field biosensor based on 1D photonic bandgap structures

  • Jad Sabek,
  • Francisco Javier Díaz-Fernández,
  • Luis Torrijos-Morán,
  • Zeneida Díaz-Betancor,
  • Ángel Maquieira,
  • María-José Bañuls,
  • Elena Pinilla-Cienfuegos and
  • Jaime García-Rupérez

Beilstein J. Nanotechnol. 2019, 10, 967–974, doi:10.3762/bjnano.10.97

Graphical Abstract
  • of proteins. As the sensing in this type of structures is governed by the interaction between the evanescent field going into the cladding and the target analytes, scanning near-field optical microscopy has been used to characterize the profile of that evanescent field. The study confirms the strong
  • the interaction with the target analytes in evanescent-wave-based sensors, specifically for the case of PBG sensing structures, and thus to increase the sensitivity of the sensors. The evanescent field of this type of sensing structures has been thoroughly characterized using scanning near-field
  • optical microscopy (SNOM) in order to determine how the interaction will vary with the distance to the sensor surface. This near-field characterization has demonstrated the importance of having biorecognition layers being as thin as possible in order to reach optimal sensitivities. Taking this requirement
PDF
Album
Full Research Paper
Published 26 Apr 2019

Optical near-field mapping of plasmonic nanostructures prepared by nanosphere lithography

  • Gitanjali Kolhatkar,
  • Alexandre Merlen,
  • Jiawei Zhang,
  • Chahinez Dab,
  • Gregory Q. Wallace,
  • François Lagugné-Labarthet and
  • Andreas Ruediger

Beilstein J. Nanotechnol. 2018, 9, 1536–1543, doi:10.3762/bjnano.9.144

Graphical Abstract
  • : apertureless scanning near-field optical microscopy; diffuse signal; nanosphere lithography; photomultiplier tube; plasmonic nanostructures; Introduction SNOM (scanning near-field optical microscopy) is an imaging technique based on an optical near-field probe for high spatial resolution [1][2]. A version of
  • this technique is the apertureless scanning near-field optical microscopy (aSNOM), also known as scattering scanning near-field optical microscopy (s-SNOM). aSNOM has demonstrated tremendous potential for the study of nanostructures, as it combines the extreme sensitivity of surface enhanced optical
PDF
Album
Full Research Paper
Published 23 May 2018

Periodic structures on liquid-phase smectic A, nematic and isotropic free surfaces

  • Anna N. Bagdinova,
  • Evgeny I. Demikhov,
  • Nataliya G. Borisenko,
  • Sergei M. Tolokonnikov,
  • Gennadii V. Mishakov and
  • Andrei V. Sharkov

Beilstein J. Nanotechnol. 2018, 9, 342–352, doi:10.3762/bjnano.9.34

Graphical Abstract
  • atomic force microscope (AFM) and a scanning near-field optical microscope (SNOM). Images of the SmA phase free surface obtained by the polarized microscope and ISSA are in good correlation and show a well-known focal domain structure. The new periodic stripe structure was observed by scanning near-field
  • optical microscopy on the surface of the smectic A, nematic and isotropic phases. The properties of this periodic structure are similar to the charged liquid helium surface and can be explained by nonlinear electrostatic instabilities previously described. Keywords: focal conic domains; free boundary
PDF
Album
Full Research Paper
Published 30 Jan 2018

Comparative study of post-growth annealing of Cu(hfac)2, Co2(CO)8 and Me2Au(acac) metal precursors deposited by FEBID

  • Marcos V. Puydinger dos Santos,
  • Aleksandra Szkudlarek,
  • Artur Rydosz,
  • Carlos Guerra-Nuñez,
  • Fanny Béron,
  • Kleber R. Pirota,
  • Stanislav Moshkalev,
  • José Alexandre Diniz and
  • Ivo Utke

Beilstein J. Nanotechnol. 2018, 9, 91–101, doi:10.3762/bjnano.9.11

Graphical Abstract
  • applications, such as gas [14][15], strain [16], magnetic [12][17] and thermal sensors [18], besides nano-antennas as probes for scanning near-field optical microscopy (SNOM) [19]. Other applications comprising superconducting [20] and plasmonic [21] structures, nanoalloys for nanoelectronic applications [22
PDF
Album
Supp Info
Full Research Paper
Published 09 Jan 2018

Near-field surface plasmon field enhancement induced by rippled surfaces

  • Mario D’Acunto,
  • Francesco Fuso,
  • Ruggero Micheletto,
  • Makoto Naruse,
  • Francesco Tantussi and
  • Maria Allegrini

Beilstein J. Nanotechnol. 2017, 8, 956–967, doi:10.3762/bjnano.8.97

Graphical Abstract
  • scanning near-field optical microscopy. Keywords: aperture scanning near-field optical microscopy; gold rippled surface; localized hot spots; metal–dielectric−metal nanogaps; surface plasmon resonance; Introduction Metal nanostructures capable of producing localized surface plasmon polaritons (SPPs) are
PDF
Album
Supp Info
Full Research Paper
Published 28 Apr 2017

Correlative infrared nanospectroscopic and nanomechanical imaging of block copolymer microdomains

  • Benjamin Pollard and
  • Markus B. Raschke

Beilstein J. Nanotechnol. 2016, 7, 605–612, doi:10.3762/bjnano.7.53

Graphical Abstract
  • . Here, we combine infrared vibrational scattering scanning near-field optical microscopy (IR s-SNOM) with force–distance spectroscopy for simultaneous characterization of both nanoscale optical and nanomechanical molecular properties through hybrid imaging. The resulting multichannel images and
  • , hybrid imaging, near-field infrared spectroscopy, scanning probe microscopy; Introduction Functional soft-matter and polymer systems often exhibit novel phenomena due to nanoscale chemical heterogeneity and the resulting intermolecular interactions. Infrared vibrational scattering scanning near-field
  • optical microscopy (IR s-SNOM) provides a direct, noninvasive, label-free measure of nanoscale chemical composition by localizing the light–matter interaction via a scanning probe tip [1]. Performed most simply with a single-frequency source tuned to a molecular marker resonance [2], IR s-SNOM also
PDF
Album
Full Research Paper
Published 22 Apr 2016

Superluminescence from an optically pumped molecular tunneling junction by injection of plasmon induced hot electrons

  • Kai Braun,
  • Xiao Wang,
  • Andreas M. Kern,
  • Hilmar Adler,
  • Heiko Peisert,
  • Thomas Chassé,
  • Dai Zhang and
  • Alfred J. Meixner

Beilstein J. Nanotechnol. 2015, 6, 1100–1106, doi:10.3762/bjnano.6.111

Graphical Abstract
  • -field optical microscopy; tip-enhanced Raman spectroscopy; Introduction The emission of photons from the gap of a scanning tunneling microscope (STM) has been a focus of interest for more than twenty years [1][2] and has been used for acquiring spectroscopic information with ultra-high spatial
  • electron from above the Fermi level (upper level), hence feeding photons back by stimulated emission resonant with the gap mode. The system reflects many essential features of a superluminescent light emitting diode. Keywords: inelastic tunneling; light emitting diode; quantum plasmonics; scanning near
PDF
Album
Supp Info
Full Research Paper
Published 04 May 2015

Optical near-fields & nearfield optics

  • Alfred J. Meixner and
  • Paul Leiderer

Beilstein J. Nanotechnol. 2014, 5, 186–187, doi:10.3762/bjnano.5.19

Graphical Abstract
  • Approximation (DDA). For the modeling to be reliable, it is essential to quantitatively compare the results of simulations with experimental data. To this end, various schemes have been developed, like Scanning Near-field Optical Microscopy (SNOM) and Photoelectron Electron Microscopy (PEEM), in order to image
PDF
Editorial
Published 19 Feb 2014

k-space imaging of the eigenmodes of sharp gold tapers for scanning near-field optical microscopy

  • Martin Esmann,
  • Simon F. Becker,
  • Bernard B. da Cunha,
  • Jens H. Brauer,
  • Ralf Vogelgesang,
  • Petra Groß and
  • Christoph Lienau

Beilstein J. Nanotechnol. 2013, 4, 603–610, doi:10.3762/bjnano.4.67

Graphical Abstract
  • Abstract We investigate the radiation patterns of sharp conical gold tapers, which were designed as adiabatic nanofocusing probes for scanning near-field optical microscopy (SNOM). Field calculations show that only the lowest order eigenmode of such a taper can reach the very apex and thus induce the
  • frequency domain. Our approach has the potential to considerably improve the signal-to-background ratio in spectroscopic experiments at the nanoscale. Keywords: adiabatic nanofocusing; Fourier optics; metallic wire modes; plasmonics; scanning near-field optical microscopy (SNOM); Introduction Metallic
  • its adiabatic limit, i.e., for waveguides with gradually (adiabatically) varying cross-section, for which reflection-free SPP propagation and efficient transformation are predicted [6]. This gives rise to a new class of probes in apertureless scanning near-field optical microscopy (SNOM) that focus
PDF
Album
Supp Info
Full Research Paper
Published 02 Oct 2013

Apertureless scanning near-field optical microscopy of sparsely labeled tobacco mosaic viruses and the intermediate filament desmin

  • Alexander Harder,
  • Mareike Dieding,
  • Volker Walhorn,
  • Sven Degenhard,
  • Andreas Brodehl,
  • Christina Wege,
  • Hendrik Milting and
  • Dario Anselmetti

Beilstein J. Nanotechnol. 2013, 4, 510–516, doi:10.3762/bjnano.4.60

Graphical Abstract
  • illuminated AFM cantilever tip apex exposes strongly confined non-propagating electromagnetic fields that can serve as a coupling agent for single dye molecules. Thus, combining both techniques by means of apertureless scanning near-field optical microscopy (aSNOM) enables concurrent high resolution
  • ; fluorescence microscopy; Introduction Scanning near-field optical microscopy (SNOM) provides sub-wavelength optical resolution [1]. The sample is excited by the strongly confined near-field at the tip apex, which is induced by the dipolar coupling between the incident light and the probe. Moreover, coupling
PDF
Album
Full Research Paper
Published 11 Sep 2013

Combining nanoscale manipulation with macroscale relocation of single quantum dots

  • Francesca Paola Quacquarelli,
  • Richard A. J. Woolley,
  • Martin Humphry,
  • Jasbiner Chauhan,
  • Philip J. Moriarty and
  • Ashley Cadby

Beilstein J. Nanotechnol. 2012, 3, 324–328, doi:10.3762/bjnano.3.36

Graphical Abstract
  • resolution comparable to the length scale of the system of interest, however, continues to present a challenge. A number of techniques have been developed to push the resolution of optical microscopy and spectroscopy to the single-molecule/particle limit. These include scanning near-field optical microscopy
PDF
Album
Letter
Published 10 Apr 2012

Nano-FTIR chemical mapping of minerals in biological materials

  • Sergiu Amarie,
  • Paul Zaslansky,
  • Yusuke Kajihara,
  • Erika Griesshaber,
  • Wolfgang W. Schmahl and
  • Fritz Keilmann

Beilstein J. Nanotechnol. 2012, 3, 312–323, doi:10.3762/bjnano.3.35

Graphical Abstract
  • its first application to natural nanostructures, the mineral particles in shell and bone. "Nano-FTIR" spectral images result from Fourier-transform infrared (FTIR) spectroscopy combined with scattering scanning near-field optical microscopy (s-SNOM). On polished sections of Mytilus edulis shells we
PDF
Album
Full Research Paper
Published 05 Apr 2012

Nanophotonics, nano-optics and nanospectroscopy

  • Alfred J. Meixner

Beilstein J. Nanotechnol. 2011, 2, 499–500, doi:10.3762/bjnano.2.53

Graphical Abstract
  • nanophotonics, nano-optics and nanospectroscopy, and covers the field where nanoscience meets photonics, optics and spectroscopy. Since the pioneering days of scanning near-field optical microscopy [1][2], one of the main goals has been to combine scanning probe microscopy techniques with the spectroscopic
PDF
Video
Editorial
Published 30 Aug 2011
Other Beilstein-Institut Open Science Activities